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Introduction

It is shown that the arc tangent is defined by three series in its entire domain.
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The arc tangent is the unknown integral of a rational function.
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Series of Small Values

The initial steps of the division by smallest orders is determined.
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The division by smallest orders is determined generally.

1 0<i<n 1'2*"
_ 7 2% n
e ( 2, (Ve >+ (o 55)




Arc Tangent http://www.joinedpolynomials.org

A convergence test is applied.
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The series is integrated without remainder.
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A convergence test is applied.
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The series determines the arc tangent for small values.
0<i<n 2xi+41
.o
t = 1)« ———; <1
arctan (z) Z( ) S rir 1 || <

Series of Large Values

The initial steps of the division by highest orders is determined.
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The division by highest orders is determined generally.
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A convergence test is applied.
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The series is integrated without remainder.
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A convergence test is applied.
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The integration constant A is defined by the range of the arc tangent.
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Two series of the arc tangent result that differ by the sign of the constant.
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Summary

Three series determine the arc tangent in its entire domain.
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Both series with positive domains define 7/4.
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Short cuts exist if the value is not near the bound.
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See [2] for more details.
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