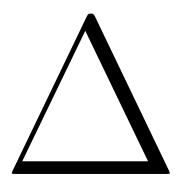
Articles in Mathematics



Hans-Dieter Reuter

January 2, 2011 Copyright © 2011 by Hans-Dieter Reuter, Germany This document is available at the Deutsche Nationalbibliothek. Latest copy available at http://www.joinedpolynomials.org. Please report significant errors only on the latest version of this document [1] to *error@joinedpolynomials.org*.

Contents

1	Arc Tangent	3
2	Exponential Function	6
3	Lagrange's Interpolation Formula	11
4	Logarithm	13
5	Poisson's Equation	16
6	Polynomial Integration	18
7	Sine Theorem	22

1 Arc Tangent

Introduction

It is shown that the arc tangent is defined by three series in its entire domain.

$$\arctan\left(x\right) = -\frac{\pi}{2} + \sum^{0 \le i < n} \frac{(-1)^{i+1}}{(2 * i + 1) * x^{2 * i + 1}}; \qquad x \le -1 \tag{1}$$

$$\arctan(x) = \sum_{i=1}^{0 \le i < n} (-1)^{i} * \frac{x^{2*i+1}}{2*i+1}; \qquad |x| \le 1$$
(2)

$$\arctan\left(x\right) = \frac{\pi}{2} + \sum^{0 \le i < n} \frac{(-1)^{i+1}}{(2 * i + 1) * x^{2 * i + 1}}; \qquad x \ge 1$$
(3)

The arc tangent is the unknown integral of a rational function.

$$\frac{d}{dx}\arctan(x) = \frac{1}{1+x^2} = \frac{1}{x^2+1}$$
(4)

Series of Small Values

The initial steps of the division by smallest orders is determined.

$$\frac{1/(1+x^2) = 1 - x^2 + x^4 - \frac{x^6}{1+x^2}}{-x^2}$$
(5)
$$\frac{1+x^2}{-x^2} - \frac{x^2 - x^4}{x^4} - \frac{x^4 + x^6}{-x^6} - x^6$$

The division by smallest orders is determined generally.

$$\frac{1}{1+x^2} = \left(\sum_{i=1}^{n} (-1)^i * x^{2*i}\right) + \left((-1)^n * \frac{x^{2*n}}{1+x^2}\right) \tag{6}$$

A convergence test is applied.

$$\left|(-1)^{i} * x^{2*i}\right| > \left|(-1)^{i+1} * x^{2*i+1}\right|;$$
 $|x| < 1$ (7)

The series is integrated without remainder.

$$F(x) = \sum^{0 \le i < n} (-1)^i * \frac{x^{2^{*i+1}}}{2^{*i+1}}$$
(8)

A convergence test is applied.

$$\left| (-1)^{i} * \frac{x^{2*i+1}}{2*i+1} \right| > \left| (-1)^{i+1} * \frac{x^{2*(i+1)+1}}{2*(i+1)+1} \right|; \qquad |x| \le 1$$
(9)

The series determines the arc tangent for small values.

$$\arctan(x) = \sum_{i=1}^{0 \le i < n} (-1)^{i} * \frac{x^{2^{i+1}}}{2^{i+1}}; \qquad |x| \le 1$$
(10)

Series of Large Values

The initial steps of the division by highest orders is determined.

$$\frac{1}{(x^{2}+1)} = \frac{1}{x^{2}} - \frac{1}{x^{4}} + \frac{1}{x^{6}} - \frac{1}{x^{6}} * \frac{1}{x^{2}+1}$$
(11)
$$\frac{1 + \frac{1}{x^{2}}}{-\frac{1}{x^{2}}} - \frac{1}{\frac{1}{x^{2}}} - \frac{1}{\frac{1}{x^{4}}} - \frac{1}{\frac{1}{x^{4}}} - \frac{1}{\frac{1}{x^{6}}} - \frac{1}{\frac{1}{x^{6$$

The division by highest orders is determined generally.

$$\frac{1}{x^2+1} = \left(\sum_{i=1}^{0 < i \le n} \frac{(-1)^i}{x^{2*i}}\right) + \left(\frac{(-1)^n}{x^{2*n} * (x^2+1)}\right)$$
(12)

A convergence test is applied.

$$\left|\frac{(-1)^{i}}{x^{2*i}}\right| > \left|\frac{(-1)^{i+1}}{x^{2*(i+1)}}\right|; \qquad |x| > 1$$
(13)

The series is integrated without remainder.

$$G(x) = A + \sum^{0 \le i < n} \frac{(-1)^{i+1}}{(2 * i + 1) * x^{2 * i + 1}} = A + g(x)$$
(14)

A convergence test is applied.

$$\left|\frac{(-1)^{i+1}}{(2*i+1)*x^{2*i+1}}\right| > \left|\frac{(-1)^{i+2}}{(2*(i+1)+1)*x^{2*(i+1)+1}}\right|; \qquad |x| \ge 1$$
(15)

The integration constant A is defined by the range of the arc tangent.

$$\lim_{x \to -\infty} \arctan(x) = -\frac{\pi}{2}; \qquad \qquad \lim_{x \to \infty} \arctan(x) = \frac{\pi}{2}; \qquad (16)$$

$$\lim_{x \to -\infty} g(x) = 0; \qquad \qquad \lim_{x \to \infty} g(x) = 0 \tag{17}$$

Two series of the arc tangent result that differ by the sign of the constant.

$$\arctan\left(x\right) = \pm \frac{\pi}{2} + \sum^{0 \le i < n} \frac{(-1)^{i+1}}{(2 * i + 1) * x^{2 * i + 1}}; \qquad \pm x \ge 1$$
(18)

Summary

Three series determine the arc tangent in its entire domain.

$$\arctan\left(x\right) = -\frac{\pi}{2} + \sum_{\substack{0 \le i < n \\ 0 \le i \le n}} \frac{(-1)^{i+1}}{(2 * i + 1) * x^{2 * i + 1}}; \qquad x \le -1$$
(19)

$$\arctan(x) = \sum^{0 \le i < n} (-1)^i * \frac{x^{2*i+1}}{2*i+1}; \qquad |x| \le 1$$
(20)

$$\arctan\left(x\right) = \frac{\pi}{2} + \sum_{i=1}^{0 \le i < n} \frac{(-1)^{i+1}}{(2 * i + 1) * x^{2 * i + 1}}; \qquad x \ge 1$$
(21)

Both series with positive domains define $\pi/4$.

$$\arctan\left(1\right) = \sum_{i=1}^{0 \le i < n} \frac{(-1)^{i+1}}{2 * i + 1} = \frac{\pi}{4}$$
(22)

Short cuts exist if the value is not near the bound.

$$\arctan(x) \approx -\frac{\pi}{2} - \frac{1}{x};$$
 $x \ll -1$ (23)

$$\arctan(x) \approx x;$$
 $|x| \ll 1$ (24)

$$\arctan(x) \approx \frac{\pi}{2} - \frac{1}{x};$$
 $x \gg 1$ (25)

See [2] for more details.

2 Exponential Function

Introduction

This article determines exponential functions in terms of rational functions and shows that the power of f(h) is an exponential function of single precision according to IEEE 754.

$$f(h) = \frac{120 + 60 * h + 12 * h^2 + h^3}{120 - 60 * h + 12 * h^2 - h^3}; \qquad \qquad \lim_{h \to 0} f(h)^{\frac{x}{h}} = \exp\left(x\right) \tag{26}$$

The exponential function is defined as the power of the universal constant e or Euler number.

$$\exp\left(x\right) = \mathbf{e}^x \tag{27}$$

Natural logarithm and exponential function are inverse.

$$\ln\left(\mathbf{e}^{x}\right) = x\tag{28}$$

Any other power is determined by the exponential function.

$$a^x = e^{\ln(a) * x} \tag{29}$$

An exact base point is determined.

$$e^0 = 1$$
 (30)

Rational First Degree Extrapolation

A polynomial is determined by three terms.

$$f(h) = a_0 * h^0 + a_1 * h^1 + a_2 * h^2$$
(31)

The first derivative is determined.

$$\frac{df(h)}{dh} = a_1 * h^0 + 2 * a_2 * h^1 \tag{32}$$

The polynomial is determined by three conditions according to the exponential function at two points $h_0 = 0$ and $h_1 = X$.

$$f(0) = 1;$$
 $a_0 = 1$ (33a)
 $df(0)$

$$\frac{df(0)}{dh} = f(0);$$
 $a_1 = a_0$ (33b)

$$\frac{df(H)}{dh} = f(H); \qquad a_1 * H^0 + 2 * a_2 * H^1 = a_0 * H^0 + a_1 * H^1 + a_2 * H^2 \qquad (33c)$$

Each equation is multiplied by a weight w_i . The sum of these weighted equations is determined.

$$w_0 * a_0 + w_1 * a_1 + w_2 * (a_1 + 2 * a_2 * H) = w_0 + w_1 * a_0 + w_2 * (a_0 + a_1 * H + a_2 * H^2)$$
(34)

The expression is rearranged such that all terms of coefficients are grouped on the left hand side.

$$a_0 * (w_0 - w_1 - w_2) + a_1 * (w_1 + w_2 * (1 - H)) + a_2 * (w_2 * (2 * H - H^2)) = w_0$$
(35)

The equation equates the polynomial under three conditions.

$$w_{0} = f(h); \qquad \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 1-H \\ 0 & 0 & 2*H-H^{2} \end{bmatrix} * \begin{bmatrix} w_{0} \\ w_{1} \\ w_{2} \end{bmatrix} = \begin{bmatrix} 1 \\ h \\ h^{2} \end{bmatrix}$$
(36)

The weight is determined that defines the polynomial.

$$w_0 = \frac{(h+1)*H - h^2 - 2*h - 2}{H - 2}$$
(37)

The equation results a simple rational function if the constant H equals the variable h.

$$w_0 = \frac{2+h}{2-h} = g(h) \tag{38}$$

A division of polynomials is applied and results the initial three terms of the exponential series and a remainder.

$$(2+h)/(2-h) = 1+h+\frac{1}{2}*h^2+\frac{1}{4}*\left(h^3+\frac{h^4}{2-h}\right)\approx e^h$$
 (39)

The law of exponents applies and results the exponential function if the variable tends to zero.

$$\lim_{h \to 0} \left(\frac{2+h}{2-h}\right)^k = \left(\mathbf{e}^h\right)^k = \mathbf{e}^{h*k} = \mathbf{e}^x; \qquad h, k \in \mathbb{R}$$
(40)

Rational Extrapolation

A polynomial is determined by 2 * n + 1 terms.

$$f(h) = \sum^{0 \le i \le 2*n} a_i * h^i$$
(41)

As many conditions determine the polynomial.

$$f(0) = 1$$

$$\frac{d^{i+1}f(0)}{dh^{i+1}} = \frac{d^{i}f(0)}{dh^{i}}; \qquad \qquad \frac{d^{i+1}f(H)}{dh^{i+1}} = \frac{d^{i}f(H)}{dh^{i}}; \qquad \qquad 0 \le i < n$$
(42)
$$(42)$$

Each equation is multiplied by a weight w_i . The sum of these weighted equations is determined. The weights are determined by a system of linear equations.

$$\begin{bmatrix} 1 & -1 & -1 & 0 & 0 & 0 & 0 & \dots & | 1 \\ 0 & 1 & 1-H & -1 & -1 & 0 & 0 & \dots & | h \\ 0 & 0 & 2*H-H^2 & 2 & 2-2*H & -2 & -2 & \dots & | h^2 \\ 0 & 0 & 3*H^2-H^3 & 0 & 6*H-3*H^2 & 6 & 6-6*H & \dots & | h^3 \\ 0 & 0 & 4*H^3-H^4 & 0 & 12*H^2-4*H^3 & 0 & 24*H-12*H^2 & \dots & | h^4 \\ 0 & 0 & 5*H^4-H^5 & 0 & 20*H^3-5*H^4 & 0 & 60*H^2-20*H^3 & \dots & | h^5 \\ 0 & 0 & 6*H^5-H^6 & 0 & 30*H^4-6*H^5 & 0 & 120*H^3-30*H^4 & \dots & | h^6 \\ \vdots & \ddots & \vdots \end{bmatrix}$$
(44)

The polynomial is determined by the zeroth weight and evaluated at H = h.

$$w_{0} = \frac{\sum_{\substack{0 \le i \le n \\ 0 \le i \le n \\ \sum}}^{0 \le i \le n} \frac{(2 * n - i)!}{(n - i)! * i!} * h^{i}}{\sum_{\substack{0 \le i \le n \\ (-1)^{i} * \frac{(2 * n - i)!}{(n - i)! * i!} * h^{i}}} = f(h)$$
(45)

The polynomial division by smallest orders results the initial terms of the exponential series and a remainder.

$$f(h) = \sum^{0 \le i \le 2^{*n}} \frac{h^i}{i!} + \mathcal{O}\left(h^{2^{*n}}\right)$$
(46)

The law of exponents applies and results the exponential function if the variable tends to zero.

$$\lim_{h \to 0} (w_0)^k = \left(\mathbf{e}^h\right)^k = \mathbf{e}^{h*k} = \mathbf{e}^x; \qquad h, k \in \mathbb{R}$$
(47)

Exponential Function of Single Precision

An exponential function of single precision according to IEEE 754 is determined by a rational function.

$$f(h) = \frac{\sum_{\substack{0 \le i \le 3\\0 \le i \le 3\\\sum}(-1)^i * \frac{(6-i)!}{(3-i)! * i!} * h^i}}{\sum_{\substack{0 \le i \le 3\\(-1)^i * \frac{(6-i)!}{(3-i)! * i!} * h^i}} = \frac{120 + 60 * h + 12 * h^2 + h^3}{120 - 60 * h + 12 * h^2 - h^3}$$
(48)

The value is computed by law of exponents with h = 0.1.

$$(f(0.1))^k \approx e^{k*0.1} = e^x$$
 (49)

The polynomial division by smallest orders is determined in order to estimate the maximum error.

$$f(h) = \left(\sum_{i=1}^{0 \le i < 7} \frac{h^i}{i!}\right) + \frac{h^7}{4800} + \frac{h^8}{28800} + \mathcal{O}\left(h^9\right)$$
(50)

$$= \left(\sum_{i=1}^{0 \le i \le 7} \frac{h^{i}}{i!}\right) + \frac{h^{7}}{100800} + \frac{h^{8}}{28800} + \mathcal{O}\left(h^{9}\right)$$
(51)

The maximum error is estimated by the remainder compared to the single extrapolation.

$$e(h) = \left| \frac{2 * h^7}{100800} \right| + \left| \frac{2 * h^8}{28800} \right|; \qquad e(0.1) < 2.7 * 10^{-12}$$
(52)

The range of single precision is about $\pm 3.403 * 10^{38}$ with seven significant leading digits. The domain of the extrapolation is determined.

$$|x| = \ln\left(3.403 * 10^{38}\right) < 90\tag{53}$$

Factor k is separated into a binary number. A maximum of nine multiplications are required for the domain of single precision and a step h.

$$90 = 900 * 0.1 < 1024 * 0.1 = 2^{10} * 0.1$$
(54)

The precision of computers is finite and usually half a bit of precision is lost for each multiplication. A maximum of two multiplications is required for each binary part. Therefore a maximum of four bits of precision is lost if double precision is used for computation.

$$\log_2\left(2*9*\frac{1}{2}\right) < 4\tag{55}$$

See [2] for more details.

Listing 1: e-function of single precision in C

```
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
static double wexp1n3(double const x)
ł
  double const xx = x * x;
  double const A = 120.1 + 12.1 * xx;
  double const B = x * (60.1 + xx);
  return (A+B)/(A-B);
}
double exp1(double const x)
ł
  unsigned j, i; // unsigned suffices for h=0.1 and LDBL_MAX
  double wj, factor;
  // compute exponent and initial factor .....
  j = (unsigned)(fabs(x)/0.11) + 1; // |x|/max(h)
  factor = wexpln3(x/j); // Gewicht von x/j
  // compute power .....
  wj = j\&1 ? factor : 1.1; // begin with w^1 or w^0
  for (i = 2; i <= j; i <<= 1) // all exponents 2,4,8,16 <=j
  ł
    factor *= factor; // w^i
    if (j&i) // if i is part of j
    ł
      wj *= factor;
    }
  }
  return wj;
}
int main(int argc, char ** argv)
ł
  double x, e, en;
  if(argc != 2)
  {
    fprintf(stderr, "%s_x\n", argv[0]);
    exit(1);
  }
  \mathbf{x} = \operatorname{atof}(\operatorname{argv}[1]);
  en = exp1(x);
  e = exp(x);
  printf("expn(\%lf)=\%.20lg(n", x, exp1(x));
  \operatorname{printf}(\operatorname{"exp}(\% \operatorname{lf})=\%.20 \operatorname{lg}(n), x, \exp(x));
  printf("fehler\[]vlg\n", (en-e)/e);
  return 0;
```

3 Lagrange's Interpolation Formula

Lagrange's Interpolation Formula is determined as a special case of polynomial transposition [2].

A number of points is determined with unique locations x_j .

$$y_j = f(x_j); \qquad \qquad 0 \le j < n \tag{56}$$

Therefore an interpolation polynomial is determined by as many terms.

$$y = f(x) = \sum_{i=1}^{0 \le i < n} a_i * x^i$$
(57)

Every point is assigned a base polynomial or weight w_j . Suppose the sum of all weighted conditions equals the polynomial.

$$f(x) = \sum_{i=1}^{0 \le i < n} a_i * x^i = \sum_{i=1}^{0 \le j < n} w_j * y_j = \sum_{i=1}^{0 \le j < n} w_j * \sum_{i=1}^{0 \le i < n} a_i * x^i_j$$
(58)

The double sum is interchanged.

$$f(x) = \sum_{i=1}^{0 \le i < n} a_i * x^i = \sum_{j=1}^{0 \le j < n} w_j * y_j = \sum_{i=1}^{0 \le i < n} a_i * \sum_{j=1}^{0 \le j < n} w_j * x_j^i$$
(59)

The base polynomials are determined by a system of linear equations according to a comparison by coefficients.

$$\sum_{0 \le j < n} w_j * x_j^i = x^i; \qquad 0 \le i < n \tag{60}$$

The base matrix is a transposed Vandermonde matrix.

$$G = \sum_{j=1}^{0 \le i < n} \left\langle \sum_{j=1}^{0 \le j < n} \left\langle x_j^i \right\rangle \right\rangle$$
(61)

The determinant of a Vandermonde matrix equals the product of all possible differences. The determinant is non-zero if all locations are unique.

$$\det(G) = \prod^{1 \le i < n} \prod^{0 \le j < i} (x_i - x_j)$$
(62)

A base polynomial is determined by Cramer's rule. Thus a source matrix is a variant of the base matrix for which one column is replaced by the source. The determinant of a source matrix is determined accordingly.

$$\det(Q_m) = \prod^{1 \le i < n} \prod^{0 \le j < i} \begin{cases} x - x_j, & \text{if } i = m \\ x_i - x, & \text{if } j = m \\ x_i - x_j, & \text{otherwise} \end{cases}$$
(63)

A base polynomial is determined by Cramer's rule. A number of differences and signs cancel.

$$w_j = \frac{\det(Q_j)}{\det(G)} = \frac{\prod_{\substack{i \neq j \\ 0 \le i < n \\ \prod_{\substack{i \neq j \\ i \neq j}}} (x_i - x_j)}{\prod_{\substack{i \neq j \\ i \neq j}} (x_i - x_j)}$$
(64)

Lagrange's Interpolation formula is determined by polynomial transposition.

$$f(x) = \sum_{j=0}^{0 \le j < n} w_j * y_j$$
(65)

4 Logarithm

A conditionally convergent series of the natural logarithm is derived for its entire domain.

The natural logarithm is the unknown integral of a hyperbola.

$$y = \ln(x); \qquad \qquad \frac{d}{dx}\ln(x) = \frac{1}{x}; \qquad \qquad x > 0 \qquad (66)$$

Derivatives of higher order follow accordingly.

$$\frac{d^{j}}{dx^{j}}\ln\left(x\right) = (-1)^{j-1} * \frac{(j-1)!}{U^{j}}$$
(67)

Natural logarithm and exponential function are inverse.

$$\ln\left(\mathbf{e}^{x}\right) = x\tag{68}$$

Logarithms of another base than e are multiples of the natural logarithm.

$$b^{y} = x;$$
 $y = \log_{b}(x) = \frac{\ln(x)}{\ln(b)}$ (69)

The logarithm is approximated by a polynomial.

$$f(x) = \sum_{i=0}^{0 \le i < n} a_i * x^i$$
 (70)

The polynomial is to equate a point of the logarithm and a number of derivatives at that point.

$$f(U) = \frac{d^0 f(U)}{dx^0} = \ln(U) = Y; \qquad \frac{d^j f(U)}{dx^j} = (-1)^{j-1} * \frac{(j-1)!}{U^j}; \qquad j > 0$$
(71)

Each condition is scaled by a weight w_i . A sum of all weighted conditions is determined.

$$w_0 * f(U) + \sum^{1 \le j < n} w_j * \frac{d^j f(U)}{dx^j} = w_0 * Y + \sum^{1 \le j < n} w_j * (-1)^{j-1} * \frac{(j-1)!}{U^j}$$
(72)

Suppose the weighted sum equals the polynomial.

...

$$f(x) = w_0 * f(U) + \sum^{1 \le j < n} w_j * \frac{d^j f(U)}{dx^j}$$
(73)

The derivatives of the polynomial are determined at the base point.

$$f(x) = a_0 + a_1 * x + a_2 * x^2 + a_3 * x^3 + a_4 * x^4 + a_5 * x^5 + \dots$$
(74)

$$\frac{df(U)}{dx} = a_1 + 2 * a_2 * U + 3 * a_3 * U^2 + 4 * a_4 * U^3 + 5 * a_5 * U^4 + \dots$$
(75)

$$\frac{d^2f(U)}{dx^2} = 2 * a_2 + 6 * a_3 * U + 12 * a_4 * U^2 + 20 * a_5 * U^3 + \dots$$
(76)

$$\frac{d^3f(U)}{dx^3} = 6 * a_3 + 24 * a_4 * U + 60 * a_5 * U^2 + \dots$$
(77)

(78)

The descending faculty is defined in order to express derivatives generally.

$$(a;b) = \frac{a!}{(a-b)!}$$
(79)

A derivative of the polynomial is defined generally.

$$\frac{d^{j}f(U)}{dx^{j}} = \sum_{i=1}^{j \le i < n} a_{i} * (i;j) * U^{i-j}$$
(80)

The weights are determined by a system of linear equations according to a comparison by the coefficients a_i .

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \dots \\ U & 1 & 0 & 0 & \dots \\ U^2 & 2 * U & 2 & 0 & \dots \\ U^3 & 3 * U^2 & 6 * U & 6 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} * \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \\ \vdots \end{bmatrix} = \begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \\ \vdots \end{bmatrix}$$
(81)

The base matrix is triangular such that the solution is available explicitly.

$$w_0 = 1 \tag{82}$$

$$w_1 = x - U * w_0 \tag{83}$$

$$w_2 = \frac{1}{2} * \left(x^2 - U^2 * w_0 - 2 * U * w_1\right)$$
(84)

$$w_3 = \frac{1}{6} * \left(x^3 - U^3 * w_0 - 3 * U^2 * w_1 - 6 * U * w_2\right)$$
(85)

$$w_m = \frac{1}{m!} * \left(x^m - \sum^{0 \le k < m} (m; k) * U^{m-k} * w_k \right)$$
(86)

The weights are noted explicitly.

$$w_0 = 1 \tag{87}$$

$$w_1 = x - U \tag{88}$$

$$w_2 = \frac{1}{2!} * \left(x^2 - U^2 - 2 * U * (x - U)\right) = \frac{1}{2!} * (x - U)^2$$
(89)

$$w_{3} = \frac{1}{3!} * \left(x^{3} - U^{3} - 3 * U^{2} * (x - U) - \frac{(3)^{2}}{2!} * U * (x - U)^{2} \right) = \frac{1}{3!} * (x - U)^{3}$$
(90)

$$w_m = \frac{1}{m!} * \left(x^m - \sum^{0 \le k < m} {m \choose k} * U^{m-k} * (x-U)^k \right) = \frac{1}{m!} * (x-U)^m$$
(91)

The value of the weights is substituted into the polynomial.

$$f(x) = f(U) + \sum_{j=1}^{1 \le j < n} \frac{1}{j!} * (x - U)^j * \frac{d^j f(U)}{dx^j}$$
(92)

The derivatives of the logarithm are noted explicitly.

$$f(x) = Y + \sum^{1 \le j < n} \frac{1}{j!} * (x - U)^j * (-1)^{j-1} * \frac{(j-1)!}{U^j}$$
(93)

A series is determined.

$$f(x) = Y + \sum^{1 \le j < n} (-1)^{j-1} * \frac{(x-U)^j}{j * U^j}$$
(94)

D'Alembert's convergence test of $1\!/\!2$ is applied.

$$\frac{1}{2} * \left| \frac{(x-U)^j}{j * U^j} \right| > \left| \frac{(x-U)^{j+1}}{(j+1) * U^{j+1}} \right|$$
(95a)

$$\left|\frac{j+1}{j} * U\right| > 2 * |x-U| \tag{95b}$$

$$|U| > 2 * |x - U|$$
 (95c)

The series converges conditionally.

$$f(x) = Y + \sum^{1 \le j < n} (-1)^{j-1} * \frac{(x-U)^j}{j * U^j}; \qquad |U| > 2 * |x-U|$$
(96)

Base points may be determined by the exponential function.

$$\mathbf{e}^{2} > 2 * \left| 10 - \mathbf{e}^{2} \right|; \qquad \qquad f(10) \approx 2 + \sum^{1 \le j < 3} (-1)^{j-1} * \frac{\left(10 - \mathbf{e}^{2} \right)^{j}}{j * \mathbf{e}^{2*j}} \approx 2.305630 \qquad (97)$$

$$\mathbf{e}^{4} > 2 * |50 - \mathbf{e}^{4}|; \qquad f(50) \approx 4 + \sum^{1 \le j < 3} (-1)^{j-1} * \frac{(50 - \mathbf{e}^{4})^{j}}{j * \mathbf{e}^{4*j}} \approx 3.912036 \qquad (98)$$

5 Poisson's Equation

Introduction

A solution to Poisson's Equation of one dimension is presented.

$$\frac{df(x)}{dx} = \text{const} \tag{99}$$

The domain is discretized by a number of equidistant points.

$$y_i = f(x_i); \qquad \qquad \frac{df(x_i)}{dx} = s_i \tag{100}$$

Poisson Operator

A local polynomial is assigned to each point.

$$f(h) = a^0 + a^1 * h + a^2 * h^2$$
(101)

Poisson's equation is applied to each polynomial.

$$2 * a_2 = s_i \tag{102}$$

Adjacent polynomials are joined by Dirichlet conditions.

$$y_{i-1} = f(-h) = a^0 - a^1 * h + a^2 * h^2$$
(103)

$$y_{i+1} = f(h) = a^0 + a^1 * h + a^2 * h^2$$
(104)

The operator is determined by a transposition [2].

$$y_i = f(0) = w_0 * y_{i-1} + w_1 * s_i + w_2 * y_{i+1}$$
(105)

The weights are determined by a system of linear equations.

$$\begin{bmatrix} 1 & 0 & 1 \\ -h & 0 & h \\ h^2 & 2 & h^2 \end{bmatrix} * \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}; \qquad \qquad w = \left(\frac{1}{2}, -\frac{h^2}{2}, \frac{1}{2}\right)$$
(106)

A value is determined explicitly by a transposed local polynomial.

$$y_i = \frac{1}{2} * y_{i-1} - \frac{h^2}{2} * q_i + \frac{1}{2} * y_{i+1}$$
(107)

A value is determined implicitly by a Poisson Operator.

$$-y_{i-1} + 2 * y_i - y_{i+1} = -h^2 * s_i = q_i$$
(108)

System of Equations

A uniform tridiagonal square system of equations is determined by n equidistant base points. The bounds of the domain are contained in the sources.

$$D_{n} * y = \begin{bmatrix} 2 & -1 & & & & & \\ -1 & 2 & -1 & & & & \\ & -1 & 2 & -1 & & & & \\ & & & -1 & 2 & -1 & \\ & & & & & -1 & 2 & -1 \\ & & & & & & -1 & 2 & -1 \\ & & & & & & & -1 & 2 \end{bmatrix} * \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \\ \vdots \\ y_{n-4} \\ y_{n-3} \\ y_{n-2} \end{bmatrix} = \begin{bmatrix} q_{1} \\ q_{2} \\ q_{3} \\ \vdots \\ q_{n-4} \\ q_{n-3} \\ q_{n-2} \end{bmatrix}$$
(109)

The determinant of a domain of n points is determined. The system consists of n-2 equations.

$$\det\left(D_n\right) = d_n = n - 1\tag{110}$$

A source matrix of n-2 equations and the k-th column replaced is determined.

$$P_{n,k} = \begin{bmatrix} 2 & -1 & q_1 & & & \\ -1 & 2 & -1 & q_2 & & & \\ & -1 & 2 & -1 & q_3 & & & \\ & & & \ddots & \ddots & & \\ & & & & q_{n-4} & -1 & 2 & -1 \\ & & & & & q_{n-3} & & -1 & 2 & -1 \\ & & & & & & q_{n-2} & & -1 & 2 \end{bmatrix}$$
(111)

The determinant of a source matrix is determined.

$$\det(P_{n,k}) = p_{n,k} = d_{n-1-k} * \sum_{i=1}^{0 \le i < k} (q_{i+1} * D_{i+2}) + d_{k+2} * \sum_{i=1}^{k \le i < n-1} (q_{i+1} * D_{n-1-i})$$
(112)

The solution to Poisson's equation is determined by Cramer's rule.

$$y_{k+1} = \frac{p_{n,k}}{d_n} = \frac{(n-2-k) * \sum_{k=1}^{0 \le i < k} (q_{i+1} * (i+1)) + (k+1) * \sum_{k=1}^{k \le i < n-2} (q_{i+1} * (n-2-i))}{n-1}$$
(113)

The solution to Laplace's equation is determined by the sources at the ends only.

$$y_{k+1} = \frac{p_{n,k}}{d_n} = \frac{(n-2-k)*q_1 + (k+1)*q_{n-2}}{n-1}$$
(114)

See [2] for an interpolation of the sine by this same method.

6 Polynomial Integration

Introduction

This articles proofs that F(x) is an integration of the polynomial f(x).

$$f(x) = \sum_{i=1}^{0 \le i < n} a_i * x^i; \qquad F(x) = C + \sum_{i=1}^{0 \le i < n} a_i * \frac{x^{i+1}}{i+1}$$
(115)

The differentiation of a polynomial is discussed before its integration.

Differentiation

The variable is separated.

$$x = u + v \tag{116}$$

The separation is substituted.

$$f(u+v) = \sum^{0 \le i < n} a_i * (u+v)^i = g(u,v)$$
(117)

The binomial expansion is applied by v.

$$g(u,v) = \sum_{i=1}^{0 \le i < n} a_i * \sum_{j=1}^{0 \le j \le i} {i \choose j} * u^{i-j} * v^j$$
(118)

The descending faculty is defined in order to dissolve the binomial coefficient.

$$(i_{i}j) = \frac{i!}{(i-j)!};$$
 $(i_{i}0) = 1$ (119)

The sums are transposed.

$$g(u,v) = \sum_{j=1}^{0 \le j < n} \frac{v^j}{j!} * \sum_{j=1}^{j \le i < n} a_i * (i;j) * u^{i-j}$$
(120)

A derivative is defined by the value of the inner sum.

$$\frac{d^{j}f(u)}{du^{j}} = \sum^{j \le i < n} a_{i} * (ij) * u^{i-j}$$
(121)

The Taylor series of the polynomial is determined.

$$g(u,v) = \sum_{j=0}^{0 \le j < n} \frac{v^j}{j!} * \frac{d^j f(u)}{du^j}$$
(122)

Integration

The integration to the next degree is defined by an offset and a constant.

$$h(u,v) = c + \sum^{0 \le j < n} \frac{v^{j+1}}{(j+1)!} * \frac{d^j f(u)}{du^j}$$
(123)

The derivatives are given explicitly.

$$h(u,v) = c + \sum^{0 \le j < n} \frac{v^{j+1}}{(j+1)!} * \sum^{j \le i < n} a_i * (i;j) * u^{i-j}$$
(124)

The sums are transposed.

$$h(u,v) = c + \sum^{0 \le i < n} a_i * \sum^{i \le j < n} \frac{v^{j+1}}{(j+1)!} * (i_i j) * u^{i-j}$$
(125)

The separation of the variable cannot be reversed due to the offset. Therefore the integration is developed at a constant location U.

$$x = u + v;$$
 $u = U = \text{const};$ $v = x - U$ (126)

The definitions are substituted and another function is determined.

$$h(U, x - U) = c + \sum^{0 \le i < n} a_i * \sum^{i \le j < n} \frac{(x - U)^{j+1}}{(j+1)!} * (i;j) * U^{i-j} = F(x)$$
(127)

The equation is rearranged.

$$F(x) = c + \sum^{0 \le i < n} a_i * \sum^{i \le j < n} \frac{(i_{ij})}{(j+1)!} * U^{i-j} * (x-U)^{j+1}$$
(128)

The binomial is expanded.

$$F(x) = c + \sum^{0 \le i < n} a_i * \sum^{i \le j < n} \frac{(i;j)}{(j+1)!} * U^{i-j} * \sum^{0 \le k \le j+1} \binom{j+1}{k} * x^k * (-U)^{j+1-k}$$
(129)

The inner sums are transposed in order to group all constants.

$$F(x) = c + \sum^{0 \le i < n} a_i * \sum^{0 \le k \le i+1} x^k * \sum^{0 \le j \le i}_{j+1 \ge k} \frac{(i;j)}{(j+1)!} * U^{i-j} * \binom{j+1}{k} * (-U)^{j+1-k}$$
(130)

An identity is required to rearranged the coefficients.

$$\binom{C}{B} * \binom{B}{A} = \frac{(C_{\mathbf{i}}A) * ((C-A)_{\mathbf{i}}(B-A))}{(B-A)! * (B_{\mathbf{i}}A)} * \frac{(B_{\mathbf{i}}A)}{A!} = \binom{C}{A} * \binom{C-A}{B-A}$$
(131)

The coefficients are rearranged such that only one factor depends on j.

$$\frac{(i_{ij})}{(j+1)!} * \binom{j+1}{k} = \frac{((i+1)_{i}(j+1))}{(i+1)*(j+1)!} * \binom{j+1}{k}$$
(132)

$$=\frac{1}{i+1}*\binom{i+1}{j+1}*\binom{j+1}{k}$$
(133)

$$= \frac{1}{i+1} * \binom{i+1}{k} * \binom{i+1-k}{j+1-k}$$
(134)

These coefficients are substituted. The exponent of the constant simplifies.

$$F(x) = c + \sum_{k=1}^{0 \le i < n} a_i * \sum_{k=1}^{0 \le k \le i+1} \frac{U^{i+1-k}}{i+1} * \binom{i+1}{k} * x^k * \sum_{j+1 \ge k}^{0 \le j \le i} (-1)^{j+1-k} * \binom{i+1-k}{j+1-k}$$
(135)

Pascal's triangle is defined with alternating signs in order to simplify the bounds of the sums.

The zeroth line of Pascal's triangle follows under two conditions.

$$i = j; \quad i+1 = k; \qquad \frac{U^{i+1-k}}{i+1} * \binom{i+1}{k} = \frac{1}{k}; \quad (-1)^{j+1-k} * \binom{i+1-k}{j+1-k} = 1$$
(137)

This case results once for each term of the integrated polynomial is noted exclusively.

$$F(x) = c + \sum_{k=1}^{0 \le i < n} a_i * \sum_{k=1}^{0 \le k < i+1} \frac{U^{i+1-k}}{i+1} * \binom{i+1}{k} * x^k * \sum_{j+1 \ge k}^{0 \le j \le i} (-1)^{j+1-k} * \binom{i+1-k}{j+1-k}$$
(138a)
+
$$\sum_{k=1}^{0 \le i < n} a_i * \frac{x^{a+1}}{i+1}$$
(138b)

The value of the innermost sum cancels if it maps to a full line of Pascal's triangle with alternating signs.

$$1 \le k < i+1; \qquad \qquad \sum_{j+1 \ge k}^{0 \le j \le i} (-1)^{j+1-k} * \binom{i+1-k}{j+1-k} = 0 \tag{139}$$

Therefore the bound of the middle sum simplifies to one index k = 0.

$$F(x) = c + \sum_{i=1}^{n} a_i * \frac{U^{i+1}}{i+1} * \sum_{i=1}^{n} (-1)^{j+1} * \binom{i+1}{j+1} + \sum_{i=1}^{n} a_i * \frac{x^{i+1}}{i+1}$$
(140)

The inner sum maps to a line of Pascal's triangle with alterning signs without its zeroth element.

$$\sum^{0 \le j \le i} (-1)^{j+1} * \binom{i+1}{j+1} = -1 \tag{141}$$

The integration polynomial is determined by simple sums.

$$F(x) = c - \sum^{0 \le i < n} a_i * \frac{U^{i+1}}{i+1} + \sum^{0 \le i < n} a_i * \frac{x^{i+1}}{i+1} = C + \sum^{0 \le i < n} a_i * \frac{x^{i+1}}{i+1}$$
(142)

The integration polynomial simplifies if the constant equals the origin.

$$U = 0; F(x) = c + \sum_{i=1}^{0 \le i < n} a_i * \frac{x^{i+1}}{i+1} (143)$$

See [2] for integration of polynomials of any dimension and offset.

7 Sine Theorem

Introduction

This article shows how to express the sine exactly as a sum along the components of a Fibonacci number. The sum is derived by a repeated extrapolation by a sine operator.

Sine Operator

The sine operator is determined by two base points one left to and another at the origin and one condition of simple harmonic motion of a distribution coefficient c at the origin.

$$f(-H) = y_L;$$
 $f(0) = y_0;$ $c^2 * f(0) + \frac{d^2 f(0)}{dh^2} = 0;$ $c > 0$ (144)

Three conditions determine a polynomial of three terms.

$$f(h) = a_0 * h^0 + a_1 * h^1 + a_2 * h^2; \qquad \frac{d^2 f(h)}{dh^2} = 2 * a_2 \tag{145}$$

Each condition is scaled by a weight w_i . A sum of the weighted conditions is determined.

$$w_L * (a_0 - a_1 * H + a_2 * H^2) + w_0 * a_0 + w_1 * (c^2 * a_0 + 2 * a_2) = w_L * y_L + w_0 * y_0$$
(146)

The sum equals the polynomial under three conditions.

$$f(h) = w_L * y_L + w_0 * y_0; \qquad \begin{bmatrix} 1 & 1 & c^2 \\ -H & 0 & 0 \\ H^2 & 0 & 2 \end{bmatrix} * \begin{bmatrix} w_L \\ w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} 1 \\ h \\ h^2 \end{bmatrix}$$
(147)

The polynomial is determined by two weights.

$$w_L = -\frac{h}{H}; \qquad \qquad w_0 = -\frac{c^2 * h * H * (H+h) - 2 * H - 2 * h}{2 * H}$$
(148)

The solution simplifies if the constant equals the variable that is the distance H to the left equals the extrapolation to the right.

$$w_L = -1;$$
 $w_0 = 2 - c^2 * h^2$ (149)

Analysis

Suppose the solution is a sine of a frequency d.

$$f(h) = R * \sin\left(\varphi + d * h\right) \tag{150}$$

The values and weights are substituted into the polynomial.

$$f(h) = w_L * y_L + w_0 * y_0 \tag{151}$$

$$R * \sin\left(\varphi + d * h\right) = R * \sin\left(\varphi - d * h\right) * w_L + R * \sin\left(\varphi\right) * w_0 \tag{152}$$

$$R * \sin(\varphi + d * h) = R * \sin(\varphi - d * h) * (-1) + R * \sin(\varphi) * (2 - c^2 * h^2)$$
(153)

A trigonometric addition formula applies.

$$\sin\left(a\pm b\right) = \sin\left(a\right) * \cos\left(b\right) \pm \cos\left(a\right) * \sin\left(b\right) \tag{154}$$

The formula is applied and two terms cancel. The scalar $R * \sin(\varphi)$ cancels. Note that w_L equals negative One.

$$\cos(d*h) = -\cos(d*h) + (2 - c^2 * h^2)$$
(155)

Distribution coefficient c and frequency d are not equal. However, the limit of the right hand side tends to c for small differences, see [2] for details.

$$d = \frac{1}{h} * \arccos\left(1 - \frac{1}{2} * c^2 * h^2\right); \qquad \lim_{h \to 0} \left(\frac{1}{h} * \arccos\left(1 - \frac{1}{2} * c^2 * h^2\right)\right) = c$$
(156)

The upper bound of difference h is determined by the domain of the arcus cosine.

$$\left|1 - \frac{1}{2} * c^2 * h^2\right| \le 1; \qquad c^2 * h^2 \le 2 \qquad (157)$$

The polynomial is determined only if h is non-zero. Therefore the lower bound is excluded. The value of $\arccos(1)$ is zero and would result a difference of zero. Therefore the upper bound is excluded. The intersected domain is determined.

$$0 < h < \frac{\sqrt{2}}{c} \tag{158}$$

Sine Repetition

The sine repetition is a numerical pattern that determines the sine. Values are repeatedly determined by two preceding values. These values are scaled by the same weights due to a uniform discretization.

$$y_h = y_L * w_L + y_0 * w_0 \tag{159}$$

$$y_{2h} = y_0 * w_L + y_h * w_0 \tag{160}$$

$$= y_0 * w_L + (y_L * w_L + y_0 * w_0) * w_0$$
(161)
$$= y_L * w_L * w_0 + y_0 * (w_L + w_0^2)$$
(162)

$$= y_L * w_L * w_0 + y_0 * (w_L + w_0^2)$$

$$y_{3h} = y_h * w_L + y_2 * h * w_0$$
(162)
(163)

$$y_{3h} = y_h * w_L + y_2 * h * w_0 \tag{163}$$

$$= y_L * \left(w_L^2 + w_L * w_0^2 \right) + y_0 * \left(2 * w_L * w_0 + w_0^3 \right)$$
(164)

Each value of the right-hand-side is scaled by a composed weight in terms of a sum. The sum is similar to a binomial expansion but does not reduce to a basic operation.

•••

$$W_{j,k} = \sum_{i=1}^{0 \le i \le \frac{j-k}{2}} {j-k-i \choose i} * w_L^{i+k} * w_0^{j-k-2*i}$$
(165)

$$=\sum_{k=0}^{0\leq i\leq \frac{j-k}{2}} (-1)^{i+k} * \binom{j-k-i}{i} * w_0^{j-k-2*i}$$
(166)

The j-th value of the repetition is determined.

$$y_{j*h} = y_L * W_{j,1} + y_0 * W_{j,0} \tag{167}$$

The value at the origin y_0 equals zero such that the value to the right y_1 depends only on the value to the left y_L .

$$y_{j*h} = y_L * \sum^{0 \le i \le \frac{j-1}{2}} (-1)^{i+1} * \binom{j-1-i}{i} * w_0^{j-1-2*i}$$
(168)

The offset φ equals zero since y_0 equals zero. An offset of π or 180 deg is determined by the sign of y_L .

$$y_{j*h} = y_L * W_{j,1} \tag{169}$$

$$\sin(j * d * h) = \sin(-d * h) * W_{j,1}$$
(170)

The sine theorem is determined.

$$\frac{\sin\left(j*d*h\right)}{\sin\left(-d*h\right)} = \sum_{\substack{0 \le i \le \frac{j-1}{2} \\ i \le j-1}}^{0 \le i \le \frac{j-1}{2}} (-1)^{i+1} * \binom{j-1-i}{i} * w_0^{j-1-2*i}$$
(171)

$$\frac{\sin\left(j*d*h\right)}{\sin\left(d*h\right)} = \sum^{0 \le i \le \frac{j-1}{2}} (-1)^i * \binom{j-1-i}{i} * w_0^{j-1-2*i}$$
(172)

The Fibonacci repetition is a special case of the sine repetition with weights w_L and w_0 of identity.

$$F_{j+2} = F_{j+1} + F_j \tag{173}$$

A Fibonacci number F is the sum of the binomial coefficients only.

$$F_{j} = \sum^{0 \le i \le \frac{j-1}{2}} {j-1-i \choose i}$$
(174)

```
Listing 2: sine theorem in C with gmp [3]
```

```
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <gmp.h>
void gbinom(mpf_t r, unsigned const a, unsigned const b)
ł
  unsigned i;
  mpf_set_ui(r, 1);
  for (i = 1; i \le b; ++i)
  ł
    mpf_mul_ui(r, r, a-i+1);
    mpf_div_ui(r, r, i);
  }
}
int main(void)
ł
  double const c = 3., h = .2, w0 = 2.-h*h*c*c;
  double const d = a\cos(w0/2.)/h, r = 1./sin(d*h);
  unsigned i, j;
  double s;
  mpf_t e, b, t;
  FILE * f = fopen("gsine.dat", "w");
  assert(f);
  mpf_set_default_prec(1024);
  mpf_init(b); mpf_init(e); mpf_init(t);
  for (j = 1; j < 500; ++j)
  ł
    mpf_set_ui(e, 0);
    for (i = 0; 2*i \le j-1; ++i)
    {
      gbinom (b, j-i-1, i);
      if(i\%2) \{ mpf_neg(b, b); \}
      mpf\_set\_d(t, w0);
      mpf_pow_ui(t, t, j-1-2*i);
      mpf_mul(b, b, t);
      mpf_add(e, e, b);
    }
    s = sin(d*(j)*h)*r;
    fprintf(f, "\%f_\%f_%f_%f_%f_%n", j*h, mpf_get_d(e), s, mpf_get_d(e)-s);
  }
  fclose(f);
  mpf_clear(b); mpf_clear(e); mpf_clear(t);
  printf("%f * sin(\% f * x) \setminus n", r, d);
  return 0;
```

References

- [1] Articles in Mathematics, Hans-Dieter Reuter, http://www.joinedpolynomials.org/aim.pdf
- [2] Joined Polynomials, Hans-Dieter Reuter, http://www.joinedpolynomials.org/jp.pdf
- [3] http://gmplib.org, visited 15. October 2010