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1 Arc Tangent

Introduction

It is shown that the arc tangent is defined by three series in its entire domain.

arctan (x) = −π
2

+
0≤i<n∑ (−1)i+1

(2 ∗ i+ 1) ∗ x2∗i+1
; x ≤ −1 (1)

arctan (x) =
0≤i<n∑

(−1)i ∗ x2∗i+1

2 ∗ i+ 1
; |x| ≤ 1 (2)

arctan (x) =
π

2
+

0≤i<n∑ (−1)i+1

(2 ∗ i+ 1) ∗ x2∗i+1
; x ≥ 1 (3)

The arc tangent is the unknown integral of a rational function.

d

dx
arctan (x) =

1
1 + x2

=
1

x2 + 1
(4)

Series of Small Values

The initial steps of the division by smallest orders is determined.

1
/

(1 + x2) = 1− x2 + x4 − x6

1 + x2
(5)

1 + x2

− x2

−x2 − x4

x4

x4 + x6

− x6

The division by smallest orders is determined generally.

1
1 + x2

=

(
0≤i<n∑

(−1)i ∗ x2∗i

)
+
(

(−1)n ∗ x2∗n

1 + x2

)
(6)

A convergence test is applied.∣∣(−1)i ∗ x2∗i∣∣ > ∣∣(−1)i+1 ∗ x2∗i+1
∣∣ ; |x| < 1 (7)

The series is integrated without remainder.

F (x) =
0≤i<n∑

(−1)i ∗ x2∗i+1

2 ∗ i+ 1
(8)
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A convergence test is applied.∣∣∣∣(−1)i ∗ x2∗i+1

2 ∗ i+ 1

∣∣∣∣ > ∣∣∣∣(−1)i+1 ∗ x2∗(i+1)+1

2 ∗ (i+ 1) + 1

∣∣∣∣ ; |x| ≤ 1 (9)

The series determines the arc tangent for small values.

arctan (x) =
0≤i<n∑

(−1)i ∗ x2∗i+1

2 ∗ i+ 1
; |x| ≤ 1 (10)

Series of Large Values

The initial steps of the division by highest orders is determined.

1
/

(x2 + 1) =
1
x2
− 1
x4

+
1
x6
− 1
x6
∗ 1
x2 + 1

(11)

1 +
1
x2

− 1
x2

− 1
x2
− 1
x4

1
x4

1
x4

+
1
x6

− 1
x6

The division by highest orders is determined generally.

1
x2 + 1

=

(
0<i≤n∑ (−1)i

x2∗i

)
+
(

(−1)n

x2∗n ∗ (x2 + 1)

)
(12)

A convergence test is applied.∣∣∣∣ (−1)i

x2∗i

∣∣∣∣ > ∣∣∣∣ (−1)i+1

x2∗(i+1)

∣∣∣∣ ; |x| > 1 (13)

The series is integrated without remainder.

G(x) = A+
0≤i<n∑ (−1)i+1

(2 ∗ i+ 1) ∗ x2∗i+1
= A+ g(x) (14)

A convergence test is applied.∣∣∣∣ (−1)i+1

(2 ∗ i+ 1) ∗ x2∗i+1

∣∣∣∣ > ∣∣∣∣ (−1)i+2

(2 ∗ (i+ 1) + 1) ∗ x2∗(i+1)+1

∣∣∣∣ ; |x| ≥ 1 (15)
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The integration constant A is defined by the range of the arc tangent.

lim
x→−∞

arctan (x) = −π
2

; lim
x→∞

arctan (x) =
π

2
; (16)

lim
x→−∞

g(x) = 0; lim
x→∞

g(x) = 0 (17)

Two series of the arc tangent result that differ by the sign of the constant.

arctan (x) = ±π
2

+
0≤i<n∑ (−1)i+1

(2 ∗ i+ 1) ∗ x2∗i+1
; ±x ≥ 1 (18)

Summary

Three series determine the arc tangent in its entire domain.

arctan (x) = −π
2

+
0≤i<n∑ (−1)i+1

(2 ∗ i+ 1) ∗ x2∗i+1
; x ≤ −1 (19)

arctan (x) =
0≤i<n∑

(−1)i ∗ x2∗i+1

2 ∗ i+ 1
; |x| ≤ 1 (20)

arctan (x) =
π

2
+

0≤i<n∑ (−1)i+1

(2 ∗ i+ 1) ∗ x2∗i+1
; x ≥ 1 (21)

Both series with positive domains define π/4.

arctan (1) =
0≤i<n∑ (−1)i+1

2 ∗ i+ 1
=
π

4
(22)

Short cuts exist if the value is not near the bound.

arctan (x) ≈ −π
2
− 1
x

; x� −1 (23)

arctan (x) ≈ x; |x| � 1 (24)

arctan (x) ≈ π

2
− 1
x

; x� 1 (25)

See [2] for more details.
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2 Exponential Function

Introduction

This article determines exponential functions in terms of rational functions and shows that the
power of f(h) is an exponential function of single precision according to IEEE 754.

f(h) =
120 + 60 ∗ h+ 12 ∗ h2 + h3

120− 60 ∗ h+ 12 ∗ h2 − h3
; lim

h→0
f(h)

x
h = exp (x) (26)

The exponential function is defined as the power of the universal constant e or Euler number.

exp (x) = ex (27)

Natural logarithm and exponential function are inverse.

ln (ex) = x (28)

Any other power is determined by the exponential function.

ax = eln(a)∗x (29)

An exact base point is determined.

e0 = 1 (30)

Rational First Degree Extrapolation

A polynomial is determined by three terms.

f(h) = a0 ∗ h0 + a1 ∗ h1 + a2 ∗ h2 (31)

The first derivative is determined.

df(h)
dh

= a1 ∗ h0 + 2 ∗ a2 ∗ h1 (32)

The polynomial is determined by three conditions according to the exponential function at two
points h0 = 0 and h1 = X.

f(0) = 1; a0 = 1 (33a)
df(0)
dh

= f(0); a1 = a0 (33b)

df(H)
dh

= f(H); a1 ∗H0 + 2 ∗ a2 ∗H1 = a0 ∗H0 + a1 ∗H1 + a2 ∗H2 (33c)

Each equation is multiplied by a weight wi. The sum of these weighted equations is determined.

w0 ∗ a0 + w1 ∗ a1 + w2 ∗ (a1 + 2 ∗ a2 ∗H) = w0 + w1 ∗ a0 + w2 ∗
(
a0 + a1 ∗H + a2 ∗H2

)
(34)
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The expression is rearranged such that all terms of coefficients are grouped on the left hand side.

a0 ∗ (w0 − w1 − w2) + a1 ∗ (w1 + w2 ∗ (1−H)) + a2 ∗
(
w2 ∗

(
2 ∗H −H2

))
= w0 (35)

The equation equates the polynomial under three conditions.

w0 = f(h);

1 −1 −1
0 1 1−H
0 0 2 ∗H −H2

 ∗
w0

w1

w2

 =

 1
h
h2

 (36)

The weight is determined that defines the polynomial.

w0 =
(h+ 1) ∗H − h2 − 2 ∗ h− 2

H − 2
(37)

The equation results a simple rational function if the constant H equals the variable h. The
rational function equals the Padé approximant [1/1] under this condition.

w0 =
2 + h

2− h
= g(h); H = h (38)

A division of polynomials is applied and results the initial three terms of the exponential series
and a remainder.

(2 + h)
/

(2− h) = 1 + h+
1
2
∗ h2 +

1
4
∗
(
h3 +

h4

2− h

)
≈ eh (39)

The law of exponents applies and results the exponential function if the variable tends to zero.

lim
h→0

(
2 + h

2− h

)k
=
(
eh
)k

= eh∗k = ex; h, k ∈ R (40)

Rational Extrapolation

A polynomial is determined by 2 ∗ n+ 1 terms.

f(h) =
0≤i≤2∗n∑

ai ∗ hi (41)

As many conditions determine the polynomial.

f(0) = 1 (42)

di+1f (0)
dhi+1

=
dif (0)
dhi

;
di+1f (H)
dhi+1

=
dif (H)
dhi

; 0 ≤ i < n (43)

Each equation is multiplied by a weight wi. The sum of these weighted equations is determined.
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The weights are determined by a system of linear equations.

1 −1 −1 0 0 0 0 . . . 1
0 1 1−H −1 −1 0 0 . . . h
0 0 2 ∗H −H2 2 2− 2 ∗H −2 −2 . . . h2

0 0 3 ∗H2 −H3 0 6 ∗H − 3 ∗H2 6 6− 6 ∗H . . . h3

0 0 4 ∗H3 −H4 0 12 ∗H2 − 4 ∗H3 0 24 ∗H − 12 ∗H2 . . . h4

0 0 5 ∗H4 −H5 0 20 ∗H3 − 5 ∗H4 0 60 ∗H2 − 20 ∗H3 . . . h5

0 0 6 ∗H5 −H6 0 30 ∗H4 − 6 ∗H5 0 120 ∗H3 − 30 ∗H4 . . . h6

...
...

...
...

...
...

...
. . .

...


(44)

The polynomial is determined by the zeroth weight and evaluated at H = h where it equals the
Padé approximant [n/n].

w0 =

0≤i≤n∑ (2 ∗ n− i)!
(n− i)! ∗ i!

∗ hi

0≤i≤n∑
(−1)i ∗ (2 ∗ n− i)!

(n− i)! ∗ i!
∗ hi

= f(h); H = h (45)

The polynomial division by smallest orders results the initial terms of the exponential series and
a remainder.

f(h) =
0≤i≤2∗n∑ hi

i!
+O

(
h2∗n) (46)

The law of exponents applies and results the exponential function if the variable tends to zero.

lim
h→0

(w0)k =
(
eh
)k

= eh∗k = ex; h, k ∈ R (47)

Exponential Function of Single Precision

An exponential function of single precision according to IEEE 754 is determined by a rational
function that equals the Padé approximant [3/3].

f(h) =

0≤i≤3∑ (6− i)!
(3− i)! ∗ i!

∗ hi

0≤i≤3∑
(−1)i ∗ (6− i)!

(3− i)! ∗ i!
∗ hi

=
120 + 60 ∗ h+ 12 ∗ h2 + h3

120− 60 ∗ h+ 12 ∗ h2 − h3
(48)

The value is computed by law of exponents with h = 0.1.

(f(0.1))k ≈ ek∗0.1 = ex (49)

The polynomial division by smallest orders is determined in order to estimate the maximum error.

f(h) =

(
0≤i<7∑ hi

i!

)
+

h7

4800
+

h8

28800
+O

(
h9
)

(50)

=

(
0≤i≤7∑ hi

i!

)
+

h7

100800
+

h8

28800
+O

(
h9
)

(51)
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The maximum error is estimated by the remainder compared to the single extrapolation.

e(h) =
∣∣∣∣ 2 ∗ h7

100800

∣∣∣∣+
∣∣∣∣2 ∗ h8

28800

∣∣∣∣ ; e(0.1) < 2.7 ∗ 10−12 (52)

The range of single precision is about ±3.403 ∗ 1038 with seven significant leading digits. The
domain of the extrapolation is determined.

|x| = ln
(
3.403 ∗ 1038

)
< 90 (53)

Factor k is separated into a binary number. A maximum of nine multiplications are required for
the domain of single precision and a step h.

90 = 900 ∗ 0.1 < 1024 ∗ 0.1 = 210 ∗ 0.1 (54)

The precision of computers is finite and usually half a bit of precision is lost for each multiplication.
A maximum of two multiplications is required for each binary part. Therefore a maximum of four
bits of precision is lost if double precision is used for computation.

log2

(
2 ∗ 9 ∗ 1

2

)
< 4 (55)

See [2] for more details.
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Listing 1: e-function of single precision in C

#include <math . h>
#include <s t d i o . h>
#include <s t d l i b . h>

stat ic double wexp1n3 (double const x )
{

double const xx = x∗x ;
double const A = 120 . l + 12 . l ∗xx ;
double const B = x ∗ ( 6 0 . l + xx ) ;
return (A+B)/(A−B) ;

}

double exp1 (double const x )
{

unsigned j , i ; // unsigned s u f f i c e s f o r h=0.1 and LDBL MAX
double wj , f a c t o r ;
// compute exponent and i n i t i a l f a c t o r . . . . . . . . . . . . . . . . . . . . . . . . . . . .
j = (unsigned ) ( f abs ( x ) / 0 . 1 l ) + 1 ; // | x |/max(h )
f a c t o r = wexp1n3 ( x/ j ) ; // Gewicht von x/ j
// compute power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
wj = j&1 ? f a c t o r : 1 . l ; // beg in wi th wˆ1 or wˆ0
for ( i = 2 ; i <= j ; i <<= 1) // a l l exponents 2 ,4 ,8 ,16 <=j
{

f a c t o r ∗= f a c t o r ; // wˆ i
i f ( j&i ) // i f i i s par t o f j
{

wj ∗= f a c t o r ;
}

}
return wj ;

}

int main ( int argc , char ∗∗ argv )
{

double x , e , en ;
i f ( argc != 2)
{

f p r i n t f ( s tde r r , ”%s x\n” , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}
x = a t o f ( argv [ 1 ] ) ;
en = exp1 ( x ) ;
e = exp ( x ) ;
p r i n t f ( ”expn(% l f )=%.20 l g \n” , x , exp1 ( x ) ) ;
p r i n t f ( ”exp (% l f )=%.20 l g \n” , x , exp ( x ) ) ;
p r i n t f ( ” f e h l e r˜%l g \n” , ( en−e )/ e ) ;
return 0 ;

}
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3 Lagrange’s Interpolation Formula

Lagrange’s Interpolation Formula is determined as a special case of polynomial transposition [2].

A number of points is determined with unique locations xj .

yj = f(xj); 0 ≤ j < n (56)

Therefore an interpolation polynomial is determined by as many terms.

y = f(x) =
0≤i<n∑

ai ∗ xi (57)

Every point is assigned a base polynomial or weight wj . Suppose the sum of all weighted conditions
equals the polynomial.

f(x) =
0≤i<n∑

ai ∗ xi =
0≤j<n∑

wj ∗ yj =
0≤j<n∑

wj ∗
0≤i<n∑

ai ∗ xij (58)

The double sum is interchanged.

f(x) =
0≤i<n∑

ai ∗ xi =
0≤j<n∑

wj ∗ yj =
0≤i<n∑

ai ∗
0≤j<n∑

wj ∗ xij (59)

The base polynomials are determined by a system of linear equations according to a comparison
by coefficients.

0≤j<n∑
wj ∗ xij = xi; 0 ≤ i < n (60)

The base matrix is a transposed Vandermonde matrix.

G =
0≤i<n∑ 〈

0≤j<n∑ 〈
xij
〉〉

(61)

The determinant of a Vandermonde matrix equals the product of all possible differences. The
determinant is non-zero if all locations are unique.

det (G) =
1≤i<n∏ 0≤j<i∏

(xi − xj) (62)

A base polynomial is determined by Cramer’s rule. Thus a source matrix is a variant of the base
matrix for which one column is replaced by the source. The determinant of a source matrix is
determined accordingly.

det (Qm) =
1≤i<n∏ 0≤j<i∏ 

x− xj , if i = m

xi − x, if j = m

xi − xj , otherwise
(63)
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A base polynomial is determined by Cramer’s rule. A number of differences and signs cancel.

wj =
det (Qj)
det (G)

=

0≤i<n∏
i6=j

(xi − x)

0≤i<n∏
i 6=j

(xi − xj)

(64)

Lagrange’s Interpolation formula is determined by polynomial transposition.

f(x) =
0≤j<n∑

wj ∗ yj (65)
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4 Logarithm

A conditionally convergent series of the natural logarithm is derived for its entire domain.

The natural logarithm is the unknown integral of a hyperbola.

y = ln (x) ;
d

dx
ln (x) =

1
x

; x > 0 (66)

Derivatives of higher order follow accordingly.

dj

dxj
ln (x) = (−1)j−1 ∗ (j − 1)!

U j
(67)

Natural logarithm and exponential function are inverse.

ln (ex) = x (68)

Logarithms of another base than e are multiples of the natural logarithm.

by = x; y = logb (x) =
ln (x)
ln (b)

(69)

The logarithm is approximated by a polynomial.

f(x) =
0≤i<n∑

ai ∗ xi (70)

The polynomial is to equate a point of the logarithm and a number of derivatives at that point.

f(U) =
d0f (U)
dx0

= ln (U) = Y ;
djf (U)
dxj

= (−1)j−1 ∗ (j − 1)!
U j

; j > 0 (71)

Each condition is scaled by a weight wi. A sum of all weighted conditions is determined.

w0 ∗ f(U) +
1≤j<n∑

wj ∗
djf (U)
dxj

= w0 ∗ Y +
1≤j<n∑

wj ∗ (−1)j−1 ∗ (j − 1)!
U j

(72)

Suppose the weighted sum equals the polynomial.

f(x) = w0 ∗ f(U) +
1≤j<n∑

wj ∗
djf (U)
dxj

(73)

The derivatives of the polynomial are determined at the base point.

f(x) = a0 + a1 ∗ x+ a2 ∗ x2 + a3 ∗ x3 + a4 ∗ x4 + a5 ∗ x5 + ... (74)
df(U)
dx

= a1 + 2 ∗ a2 ∗ U + 3 ∗ a3 ∗ U2 + 4 ∗ a4 ∗ U3 + 5 ∗ a5 ∗ U4 + ... (75)

d2f (U)
dx2

= 2 ∗ a2 + 6 ∗ a3 ∗ U + 12 ∗ a4 ∗ U2 + 20 ∗ a5 ∗ U3 + ... (76)

d3f (U)
dx3

= 6 ∗ a3 + 24 ∗ a4 ∗ U + 60 ∗ a5 ∗ U2 + ... (77)

... (78)
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The descending faculty is defined in order to express derivatives generally.

(a¡b) =
a!

(a− b)!
(79)

A derivative of the polynomial is defined generally.

djf (U)
dxj

=
j≤i<n∑

ai ∗ (i¡j) ∗ U i−j (80)

The weights are determined by a system of linear equations according to a comparison by the
coefficients ai. 

1 0 0 0 . . .
U 1 0 0 . . .
U2 2 ∗ U 2 0 . . .
U3 3 ∗ U2 6 ∗ U 6 . . .
...

...
...

...
. . .

 ∗

w0

w1

w2

w3

...

 =


1
x
x2

x3

...

 (81)

The base matrix is triangular such that the solution is available explicitly.

w0 = 1 (82)
w1 = x− U ∗ w0 (83)

w2 =
1
2
∗
(
x2 − U2 ∗ w0 − 2 ∗ U ∗ w1

)
(84)

w3 =
1
6
∗
(
x3 − U3 ∗ w0 − 3 ∗ U2 ∗ w1 − 6 ∗ U ∗ w2

)
(85)

wm =
1
m!
∗

(
xm −

0≤k<m∑
(m¡k) ∗ Um−k ∗ wk

)
(86)

The weights are noted explicitly.

w0 = 1 (87)
w1 = x− U (88)

w2 =
1
2!
∗
(
x2 − U2 − 2 ∗ U ∗ (x− U)

)
=

1
2!
∗ (x− U)2 (89)

w3 =
1
3!
∗
(
x3 − U3 − 3 ∗ U2 ∗ (x− U)− (3¡2)

2!
∗ U ∗ (x− U)2

)
=

1
3!
∗ (x− U)3 (90)

wm =
1
m!
∗

(
xm −

0≤k<m∑ (
m

k

)
∗ Um−k ∗ (x− U)k

)
=

1
m!
∗ (x− U)m (91)

The value of the weights is substituted into the polynomial.

f(x) = f(U) +
1≤j<n∑ 1

j!
∗ (x− U)j ∗ d

jf (U)
dxj

(92)

The derivatives of the logarithm are noted explicitly.

f(x) = Y +
1≤j<n∑ 1

j!
∗ (x− U)j ∗ (−1)j−1 ∗ (j − 1)!

U j
(93)

14
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A series is determined.

f(x) = Y +
1≤j<n∑

(−1)j−1 ∗ (x− U)j

j ∗ U j
(94)

D’Alembert’s convergence test of 1/2 is applied.

1
2
∗
∣∣∣∣ (x− U)j

j ∗ U j

∣∣∣∣ > ∣∣∣∣ (x− U)j+1

(j + 1) ∗ U j+1

∣∣∣∣ (95a)∣∣∣∣j + 1
j
∗ U
∣∣∣∣ > 2 ∗ |x− U | (95b)

|U | > 2 ∗ |x− U | (95c)

The series converges conditionally.

ln (x) = Y +
1≤j<n∑

(−1)j−1 ∗ (x− U)j

j ∗ U j
; U > 0; U > 2 ∗ |x− U | ; Y = ln (U) (96)

Base points may be determined by the exponential function.

e2 > 2 ∗
∣∣10− e2

∣∣ ; f(10) ≈ 2 +
1≤j<3∑

(−1)j−1 ∗
(
10− e2

)j
j ∗ e2∗j ≈ 2.305630 (97)

e4 > 2 ∗
∣∣50− e4

∣∣ ; f(50) ≈ 4 +
1≤j<3∑

(−1)j−1 ∗
(
50− e4

)j
j ∗ e4∗j ≈ 3.912036 (98)
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5 Poisson’s Equation

Introduction

A solution to Poisson’s Equation of one dimension is presented.

df(x)
dx

= const (99)

The domain is discretized by a number of equidistant points.

yi = f(xi);
df(xi)
dx

= si (100)

Poisson Operator

A local polynomial is assigned to each point.

f(h) = a0 + a1 ∗ h+ a2 ∗ h2 (101)

Poisson’s equation is applied to each polynomial.

2 ∗ a2 = si (102)

Adjacent polynomials are joined by Dirichlet conditions.

yi−1 = f(−h) = a0 − a1 ∗ h+ a2 ∗ h2 (103)

yi+1 = f(h) = a0 + a1 ∗ h+ a2 ∗ h2 (104)

The operator is determined by a transposition [2].

yi = f(0) = w0 ∗ yi−1 + w1 ∗ si + w2 ∗ yi+1 (105)

The weights are determined by a system of linear equations. 1 0 1
−h 0 h
h2 2 h2

 ∗
w0

w1

w2

 =

1
0
0

 ; w =
(

1
2
,−h

2

2
,

1
2

)
(106)

A value is determined explicitly by a transposed local polynomial.

yi =
1
2
∗ yi−1 −

h2

2
∗ qi +

1
2
∗ yi+1 (107)

A value is determined implicitly by a Poisson Operator.

−yi−1 + 2 ∗ yi − yi+1 = −h2 ∗ si = qi (108)
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System of Equations

A uniform tridiagonal square system of equations is determined by n equidistant base points. The
bounds of the domain are contained in the sources.

Dn ∗ y =



2 −1
−1 2 −1

−1 2 −1
. . .

−1 2 −1
−1 2 −1

−1 2


∗



y1
y2
y3
.

yn−4

yn−3

yn−2


=



q1
q2
q3
.

qn−4

qn−3

qn−2


(109)

The determinant of a domain of n points is determined. The system consists of n− 2 equations.

det (Dn) = dn = n− 1 (110)

A source matrix of n− 2 equations and the k-th column replaced is determined.

Pn,k =



2 −1 q1
−1 2 −1 q2

−1 2 −1 q3
. . .
qn−4 −1 2 −1
qn−3 −1 2 −1
qn−2 −1 2


(111)

The determinant of a source matrix is determined.

det (Pn,k) = pn,k = dn−1−k ∗
0≤i<k∑

(qi+1 ∗Di+2) + dk+2 ∗
k≤i<n−1∑

(qi+1 ∗Dn−1−i) (112)

The solution to Poisson’s equation is determined by Cramer’s rule.

yk+1 =
pn,k
dn

=
(n− 2− k) ∗

0≤i<k∑
(qi+1 ∗ (i+ 1)) + (k + 1) ∗

k≤i<n−2∑
(qi+1 ∗ (n− 2− i))

n− 1
(113)

The solution to Laplace’s equation is determined by the sources at the ends only.

yk+1 =
pn,k
dn

=
(n− 2− k) ∗ q1 + (k + 1) ∗ qn−2

n− 1
(114)

See [2] for an interpolation of the sine by this same method.
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6 Polynomial Integration

Introduction

This articles proofs that F (x) is an integration of the polynomial f(x) for a change v of any size.

f(x) =
0≤i<n∑

ai ∗ xi; F (x) = C +
0≤i<n∑

ai ∗
xi+1

i+ 1
(115)

The differentiation of a polynomial is discussed before its integration.

Differentiation

The variable is separated.

x = u+ v (116)

The separation is substituted.

f(u+ v) =
0≤i<n∑

ai ∗ (u+ v)i = g(u, v) (117)

The binomial expansion is applied by v.

g(u, v) =
0≤i<n∑

ai ∗
0≤j≤i∑ (

i

j

)
∗ ui−j ∗ vj (118)

The descending faculty is defined in order to dissolve the binomial coefficient.

(i¡j) =
i!

(i− j)!
; (i¡0) = 1 (119)

The sums are transposed.

g(u, v) =
0≤j<n∑ vj

j!
∗
j≤i<n∑

ai ∗ (i¡j) ∗ ui−j (120)

A derivative is defined by the value of the inner sum.

djf (u)
duj

=
j≤i<n∑

ai ∗ (i¡j) ∗ ui−j (121)

The Taylor series of the polynomial is determined.

g(u, v) =
0≤j<n∑ vj

j!
∗ d

jf (u)
duj

(122)
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Integration

The integration to the next degree is defined by an offset and a constant.

h(u, v) = c+
0≤j<n∑ vj+1

(j + 1)!
∗ d

jf (u)
duj

;
djf(u)
duj

=
dj+1F (u)
duj+1

(123)

The derivatives are given explicitly.

h(u, v) = c+
0≤j<n∑ vj+1

(j + 1)!
∗
j≤i<n∑

ai ∗ (i¡j) ∗ ui−j (124)

The sums are transposed.

h(u, v) = c+
0≤i<n∑

ai ∗
i≤j<n∑ vj+1

(j + 1)!
∗ (i¡j) ∗ ui−j (125)

The separation of the variable cannot be reversed due to the offset. Therefore the integration is
developed at a constant location U .

x = u+ v; u = U = const; v = x− U (126)

The definitions are substituted and another function is determined.

h(U, x− U) = c+
0≤i<n∑

ai ∗
i≤j<n∑ (x− U)j+1

(j + 1)!
∗ (i¡j) ∗ U i−j = F (x) (127)

The equation is rearranged.

F (x) = c+
0≤i<n∑

ai ∗
i≤j<n∑ (i¡j)

(j + 1)!
∗ U i−j ∗ (x− U)j+1 (128)

The binomial is expanded.

F (x) = c+
0≤i<n∑

ai ∗
i≤j<n∑ (i¡j)

(j + 1)!
∗ U i−j ∗

0≤k≤j+1∑ (
j + 1
k

)
∗ xk ∗ (−U)j+1−k (129)

The inner sums are transposed in order to group all constants.

F (x) = c+
0≤i<n∑

ai ∗
0≤k≤i+1∑

xk ∗
0≤j≤i∑
j+1≥k

(i¡j)
(j + 1)!

∗ U i−j ∗
(
j + 1
k

)
∗ (−U)j+1−k (130)

An identity is required to rearranged the coefficients.(
C

B

)
∗
(
B

A

)
=

(C¡A) ∗ ((C −A)¡(B −A))
(B −A)! ∗ (B¡A)

∗ (B¡A)
A!

=
(
C

A

)
∗
(
C −A
B −A

)
(131)
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The coefficients are rearranged such that only one factor depends on j.

(i¡j)
(j + 1)!

∗
(
j + 1
k

)
=

((i+ 1)¡(j + 1))
(i+ 1) ∗ (j + 1)!

∗
(
j + 1
k

)
(132)

=
1

i+ 1
∗
(
i+ 1
j + 1

)
∗
(
j + 1
k

)
(133)

=
1

i+ 1
∗
(
i+ 1
k

)
∗
(
i+ 1− k
j + 1− k

)
(134)

These coefficients are substituted. The exponent of the constant simplifies.

F (x) = c+
0≤i<n∑

ai ∗
0≤k≤i+1∑ U i+1−k

i+ 1
∗
(
i+ 1
k

)
∗ xk ∗

0≤j≤i∑
j+1≥k

(−1)j+1−k ∗
(
i+ 1− k
j + 1− k

)
(135)

Pascal’s triangle is defined with alternating signs in order to simplify the bounds of the sums.

1 = 1
1 − 1 = 0

1 − 2 + 1 = 0
1 − 3 + 3 − 1 = 0

1 − 4 + 6 − 4 + 1 = 0
. . . = 0

(136)

The zeroth line of Pascal’s triangle follows under two conditions.

i = j; i+ 1 = k;
U i+1−k

i+ 1
∗
(
i+ 1
k

)
=

1
k

; (−1)j+1−k ∗
(
i+ 1− k
j + 1− k

)
= 1 (137)

This case results once for each term of the integrated polynomial is noted exclusively.

F (x) = c+
0≤i<n∑

ai ∗
0≤k<i+1∑ U i+1−k

i+ 1
∗
(
i+ 1
k

)
∗ xk ∗

0≤j≤i∑
j+1≥k

(−1)j+1−k ∗
(
i+ 1− k
j + 1− k

)
(138a)

+
0≤i<n∑

ai ∗
xa+1

i+ 1
(138b)

The value of the innermost sum cancels if it maps to a full line of Pascal’s triangle with alternating
signs.

1 ≤ k < i+ 1;
0≤j≤i∑
j+1≥k

(−1)j+1−k ∗
(
i+ 1− k
j + 1− k

)
= 0 (139)

Therefore the bound of the middle sum simplifies to one index k = 0.

F (x) = c+
0≤i<n∑

ai ∗
U i+1

i+ 1
∗

0≤j≤i∑
(−1)j+1 ∗

(
i+ 1
j + 1

)
+

0≤i<n∑
ai ∗

xi+1

i+ 1
(140)

The inner sum maps to a line of Pascal’s triangle with alterning signs without its zeroth element.

0≤j≤i∑
(−1)j+1 ∗

(
i+ 1
j + 1

)
= −1 (141)
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The integration polynomial is determined by simple sums.

F (x) = c−
0≤i<n∑

ai ∗
U i+1

i+ 1
+

0≤i<n∑
ai ∗

xi+1

i+ 1
= C +

0≤i<n∑
ai ∗

xi+1

i+ 1
(142)

The integration polynomial simplifies if the constant equals the origin.

U = 0; F (x) = c+
0≤i<n∑

ai ∗
xi+1

i+ 1
(143)

See [2] for integration of polynomials of any dimension and offset.
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7 Sine Theorem

Introduction

This article shows how to express the sine exactly as a sum along the components of a Fibonacci
number. The sum is derived by a recurrence relation on a sine operator.

Sine Operator

The sine operator is determined by two base points one left to and another at the origin and one
condition of simple harmonic motion of a distribution coefficient c at the origin.

f(−H) = yL; f(0) = y0; c2 ∗ f(0) +
d2f (0)
dh2

= 0; c > 0 (144)

Three conditions determine a polynomial of three terms.

f(h) = a0 ∗ h0 + a1 ∗ h1 + a2 ∗ h2;
d2f (h)
dh2

= 2 ∗ a2 (145)

Each condition is scaled by a weight wi. A sum of the weighted conditions is determined.

wL ∗
(
a0 − a1 ∗H + a2 ∗H2

)
+ w0 ∗ a0 + w1 ∗

(
c2 ∗ a0 + 2 ∗ a2

)
= wL ∗ yL + w0 ∗ y0 (146)

The sum equals the polynomial under three conditions.

f(h) = wL ∗ yL + w0 ∗ y0;

 1 1 c2

−H 0 0
H2 0 2

 ∗
wLw0

w1

 =

 1
h
h2

 (147)

The polynomial is determined by two weights.

wL = − h

H
; w0 = −c

2 ∗ h ∗H ∗ (H + h)− 2 ∗H − 2 ∗ h
2 ∗H

(148)

The solution simplifies if the constant equals the variable that is the distance H to the left equals
the extrapolation to the right.

wL = −1; w0 = 2− c2 ∗ h2 (149)

Analysis

Suppose the solution is a sine of a frequency d.

f(h) = R ∗ sin (ϕ+ d ∗ h) (150)

The values and weights are substituted into the polynomial.

f(h) = wL ∗ yL + w0 ∗ y0 (151)
R ∗ sin (ϕ+ d ∗ h) = R ∗ sin (ϕ− d ∗ h) ∗ wL +R ∗ sin (ϕ) ∗ w0 (152)

R ∗ sin (ϕ+ d ∗ h) = R ∗ sin (ϕ− d ∗ h) ∗ (−1) +R ∗ sin (ϕ) ∗
(
2− c2 ∗ h2

)
(153)
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A trigonometric addition formula applies.

sin (a± b) = sin (a) ∗ cos (b)± cos (a) ∗ sin (b) (154)

The formula is applied and two terms cancel. The scalar R ∗ sin (ϕ) cancels. Note that wL equals
negative One.

cos (d ∗ h) = −cos (d ∗ h) +
(
2− c2 ∗ h2

)
(155)

Distribution coefficient c and frequency d are not equal. However, the limit of the right hand side
tends to c for small differences, see [2] for details.

d =
1
h
∗ arccos

(
1− 1

2
∗ c2 ∗ h2

)
; lim

h→0

(
1
h
∗ arccos

(
1− 1

2
∗ c2 ∗ h2

))
= c (156)

The upper bound of difference h is determined by the domain of the arcus cosine.∣∣∣∣1− 1
2
∗ c2 ∗ h2

∣∣∣∣ ≤ 1; c2 ∗ h2 ≤ 2 (157)

The polynomial is determined only if h is non-zero. Therefore the lower bound is excluded. The
value of arccos (1) is zero and would result a difference of zero. Therefore the upper bound is
excluded. The intersected domain is determined.

0 < h <

√
2
c

(158)

Sine Recurrence Relation

The sine recurrence relation is a numerical pattern that determines the sine. Values are repeatedly
determined by two preceding values. These values are scaled by the same weights due to a uniform
discretization.

yh = yL ∗ wL + y0 ∗ w0 (159)
y2h = y0 ∗ wL + yh ∗ w0 (160)

= y0 ∗ wL + (yL ∗ wL + y0 ∗ w0) ∗ w0 (161)

= yL ∗ wL ∗ w0 + y0 ∗
(
wL + w2

0

)
(162)

y3h = yh ∗ wL + y2 ∗ h ∗ w0 (163)

= yL ∗
(
w2
L + wL ∗ w2

0

)
+ y0 ∗

(
2 ∗ wL ∗ w0 + w3

0

)
(164)

...

Each value of the right-hand-side is scaled by a composed weight in terms of a sum. The sum is
similar to a binomial expansion but does not reduce to a basic operation.

Wj,k =
0≤i≤b j−k2 c∑ (

j − k − i
i

)
∗ wi+kL ∗ wj−k−2∗i

0 (165)

=
0≤i≤b j−k2 c∑

(−1)i+k ∗
(
j − k − i

i

)
∗ wj−k−2∗i

0 (166)
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The j-th value of the repetition is determined.

yj∗h = yL ∗Wj,1 + y0 ∗Wj,0 (167)

The value at the origin y0 equals zero such that the value to the right y1 depends only on the
value to the left yL.

yj∗h = yL ∗
0≤i≤b j−1

2 c∑
(−1)i+1 ∗

(
j − 1− i

i

)
∗ wj−1−2∗i

0 (168)

The offset ϕ equals zero since y0 equals zero. An offset of π or 180 deg is determined by the sign
of yL.

yj∗h = yL ∗Wj,1 (169)
sin (j ∗ d ∗ h) = sin (−d ∗ h) ∗Wj,1 (170)

The sine theorem is determined.

sin (j ∗ d ∗ h)
sin (−d ∗ h)

=
0≤i≤b j−1

2 c∑
(−1)i+1 ∗

(
j − 1− i

i

)
∗ wj−1−2∗i

0 (171)

sin (j ∗ d ∗ h)
sin (d ∗ h)

=
0≤i≤b j−1

2 c∑
(−1)i ∗

(
j − 1− i

i

)
∗ wj−1−2∗i

0 (172)

The Fibonacci recurrence relation is a special case of the sine recurrence relation with weights wL
and w0 of identity.

Fj+2 = Fj+1 + Fj (173)

A Fibonacci number F is the sum of the binomial coefficients only.

Fj =
0≤i≤b j−1

2 c∑ (
j − 1− i

i

)
(174)
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Listing 2: sine theorem in C with gmp [3]

#include <a s s e r t . h>
#include <math . h>
#include <s t d i o . h>
#include <gmp . h>

void gbinom ( mpf t r , unsigned const a , unsigned const b)
{

unsigned i ;
m p f s e t u i ( r , 1 ) ;
for ( i = 1 ; i <= b ; ++i )
{

mpf mul ui ( r , r , a−i +1);
mpf d iv u i ( r , r , i ) ;

}
}

int main (void )
{

double const c = 3 . , h = . 2 , w0 = 2.−h∗h∗c∗c ;
double const d = acos (w0/ 2 . ) / h , r = 1 ./ s i n (d∗h ) ;
unsigned i , j ;
double s ;
mpf t e , b , t ;
FILE ∗ f = fopen ( ” g s i n e . dat ” , ”w” ) ;
a s s e r t ( f ) ;
m p f s e t d e f a u l t p r e c ( 1 0 2 4 ) ;
mp f i n i t (b ) ; mp f i n i t ( e ) ; mp f i n i t ( t ) ;
for ( j = 1 ; j < 500 ; ++j )
{

m pf s e t u i ( e , 0 ) ;
for ( i = 0 ; 2∗ i <= j −1; ++i )
{

gbinom (b , j−i −1, i ) ;
i f ( i %2) { mpf neg (b , b ) ; }
mpf set d ( t , w0 ) ;
mpf pow ui ( t , t , j−1−2∗ i ) ;
mpf mul (b , b , t ) ;
mpf add ( e , e , b ) ;

}
s = s i n (d∗( j )∗h)∗ r ;
f p r i n t f ( f , ”%f %f %f %.24 f \n” , j ∗h , mpf get d ( e ) , s , mpf get d ( e)−s ) ;

}
f c l o s e ( f ) ;
mpf c l ea r (b ) ; mpf c l ea r ( e ) ; mpf c l ea r ( t ) ;
p r i n t f ( ”%f ∗ s i n (% f ∗x )\n” , r , d ) ;
return 0 ;

}
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